CURSO BIENAL SUPERIOR DE POSTGRADO DE ESPECIALISTA EN MEDICINA INTERNA 2012 SOCIEDAD DE MEDICINA INTERNA DE BUENOS AIRES ASOCIACIÓN MÉDICA ARGENTINA

Enfermedad Renal Crónica

Dr. Carlos H. Diaz Sección Nefrología CEMIC

Temario

- Definición, Estadíos y Epidemiología
- Evaluación de la función renal
- Factores de riesgo yMecanismos de progresión
- Medidas que retrasan la progresión

- Comorbilidades en ERC
- La patología CV en la ERC
- La anemia en la ERC
- La patología ósea en la ERC
- La acidosis en la ERC

Definición de ERC

- Alteración renal funcional y/o estructural durante ≥ 3 meses manifestada por:
 - 1) Daño Renal con o sin disminución del FG, definido por:
 - Anormalidades histopatológicas.
 - Marcadores de daño renal en los análisis de sangre, orina o en estudios por imágenes.
 - 2) FG < 60 ml/min haya o no daño renal estuctural evidente.</p>

Enfermedad Renal Crónica

Deterioro progresivo e irreversible de la F.R

- No es una enfermedad en sí misma, sino una forma de evolución que puede darse en el curso de la mayoría de las nefropatías primarias o asociadas a enfermedades sistémicas.
- Una vez instalada, suele determinar la clínica y el pronóstico para ese paciente.
- Dado el desarrollo de mecanismos renales de

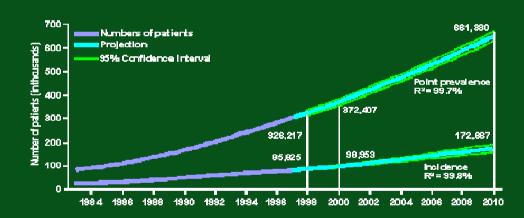
Enfermedad Renal Crónica

Consideraciones

- Patología cada vez más frecuente.
- Significativa morbi-mortalidad –especialmente CV-.
- Ocasiona altos costos económicos y sociales.
- El tratamiento efectivo y oportuno en tiempo puede retardar su progresión.
- > Seguimiento: MULTIDISCIPLINARIO

Estadios de la ERC según criterios de la NKF

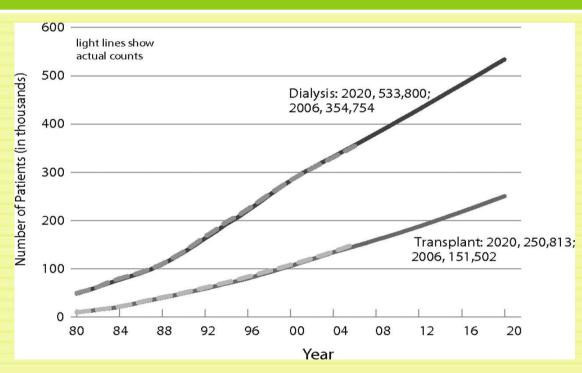
Prevalencia en los Adultos de USA según datos del NHANES (2007) y el USRDS (2006)


Stage	Description	Estimated GFR†	Prevalence	No. of Patients
		ml/min/1.73 m²	%	millions
ı	Kidney damage with normal or increased GFR	>90	1.78	3.6
Ш	Kidney damage with small decrease in GFR	60-89	3.24	6.5
Ш	Kidney damage with moderate decrease in GFR	30–59	7.69	15.5
IV	Kidney damage with large decrease in GFR	15-29	0.35	0.7
٧	Kidney failure with need for dialysis (end-stage renal disease)	<15	0.25	0.5

Impacto de ERC

PROYECCIONE S EFECTUADAS EN EL AÑO 2000

Trends in Incidence and Prevalence of ESRD


ESRD, end-stage renal disease.

US Renal Data System. USRDS 2000 A nnual Data Report.

Impacto de ERC

Las proyeccion es más recientes son algo más optimistas,

Collins, A. J. et al. Clin J Am Soc Nephrol 2009;4:S5-S11

Epidemiología de ERC en HIV

Argentina

- Prevalencia de 6²
- Incidencia de 25

Causas

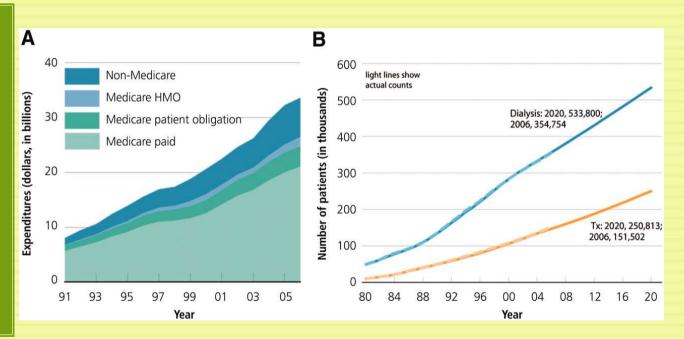
1. Nefropatía Diabética: 33,3%

2. Nefroangioesclerosis: 22,2%

3. No Filiada: 18,5%

4. Glomerulonefritis: 6,9%

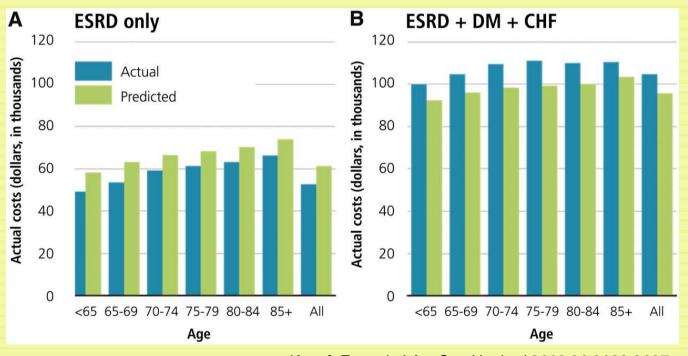
Fuente: SINTRA. www.incucai.gov.ar


26737

Impacto de ERC

En USA el incremento de los costos del programa de TSR se debe sobre todo a la población prevalente, ya que la población

incidente no sigue



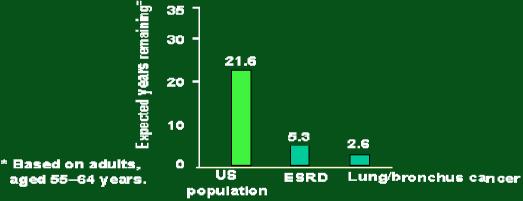
Knauf, F. et al. J Am Soc Nephrol 2009;20:2093-2097

Impacto de ERC

El costo de la diálisis aumenta con la edad y el número de

comorbili

Knauf, F. et al. J Am Soc Nephrol 2009;20:2093-2097


dades

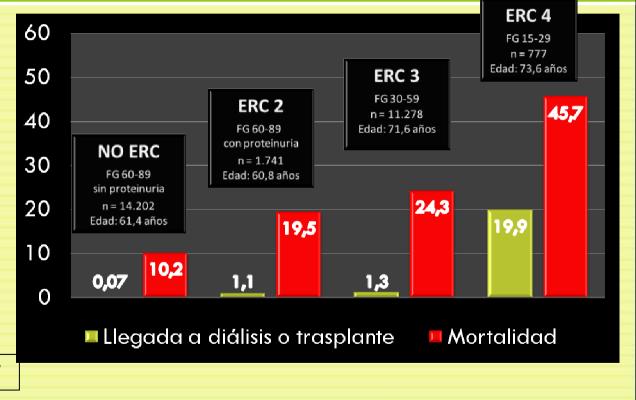
Impacto de ERC - Mortalidad

Expectativa de Vida en **ERC**

Survival in ESRD
ESRD patients lose approximately 75% of remaining years that the general population is expected to live.

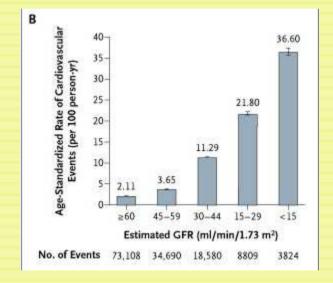
US Renal Data System. USRDS 1995 Annual Data Report. 1995. Available at: http://www.usrds.org/download/1995/ch05.pdf. Accessed May 14, 2002.

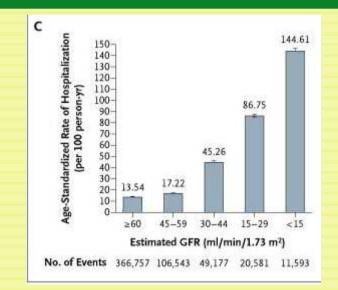
The data reported here have been supplied by the United States Kenal Data System (USKDS). The interpretation and reporting of these data are the responsibility of the author(s) and in no way should be seen as an official policy or interpretation of the US government.


Riesgo de Mortalidad y de TSR según estadio de ERC

Estudioobservacionala 5 años enpoblación con

FG <90 ml/min/1,73 m²</p>


Keikh D5-e2al. Arel Pintern Med



Correlación entre el estadío funcional de ERC

Eventos CV

Hospitalización

Prevalenc
ia de ERC
en
diversos
escenario
s de
práctica
médica

ÁMBITO PREVALENCIA

Medicina ambulatoria

> Familiares de ptes ERC

13.9 %

Ptes hospitalizados
Diabetes
HTA

2.5 %

10.9 % 14.4 %

¿Quién debe manejar la ERC?

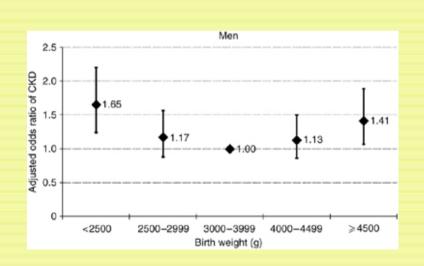
- El Internista o Médico de Familia es el RESPONSABLE PRIMARIO de la prevención, detección y manejo de la ERC a lo largo de buena parte de su desarrollo.
- Son pacientes complejos y con frecuentes comorbilidades.
- El Nefrólogo PUEDE ser consultado y compartir la atención de estos pacientes en los estadíos 1 a 3.

Factores de Riesgo para desarrollo de ERC

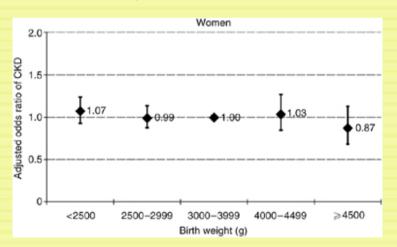
¿CUÁL ES LA
POBLACIÓN MÁS
EXPUESTA AL RIESGO
DE DESARROLLAR ERC
PROGRESIVA?

- > FACTORES PREDISPONENTES
- FACTORES INICIADORES
- FACTORES DE PERPETUACIÓN O PROGRESIÓN

Factores NO Modificables


- Edad: > 60 años
- Diabetes Mellitus
- Enfermedad sistémica/autoinmune
- > Enfermedad Cardiovascular
- Neoplasia
- Historia familiar de DBT, HTA, IRC, nefropatías heredofamiliares
- Etnia no europea
- Menor masa nefronal y estados de hiperfiltración

Factores Modificables


- Hipertensión arterial
- Dieta rica en proteínas
- Obesidad
- Hiperlipidemia
- Consumo de tabaco
- Abuso de analgésicos

El bajo peso al nacer en varones es factor de riesgo para ERC

...no en mujeres.

Odds ratio para ERC en varones (regresión logística multivariada) según peso al nacer ajustado para edad, etnia, educación, diabetes, hipertensión e historia familiar. *Li S et al, KI 73:637-642,2008*

Albuminuria como predictor de ERC

La excreción urinaria de albúmina-EUA-predice el desarrollo de hipertensión en la población

- Estudio PREVEND (JASN 17: 331,2006)
- Se demostró correlación entre EUA y desarrollo ulterior de hipertensión
- Esta correlación es especialmente firme en sujetos normotensos con EUA > 30 mg/24 hs y FG< 77 ml/min/1.73 m²

Factores Iniciadores en ERC

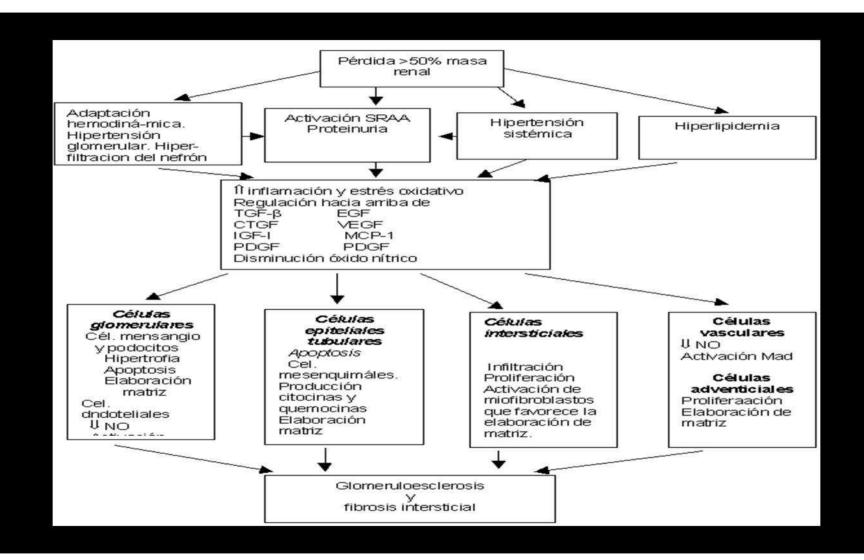
- > Enfermedad Renal Primaria
- Enfermedades Sistémicas con afección renal
- > Enfermedades urológicas
- > Nefrotoxinas
 - Analgésicos y AINEs
 - Antibióticos y antivirales
 - Medios de contraste
 - ✓ Plomo

Factores de Progresión o Perpetuación

Masa nefronal disminuída

Proteinuria

Tensión sistólica >130 mmHg Nefrotoxinas


Dieta hiperproteica

Obesidad Cardiovascular Hipoproteinemia **Anemia**

Tabaquismo

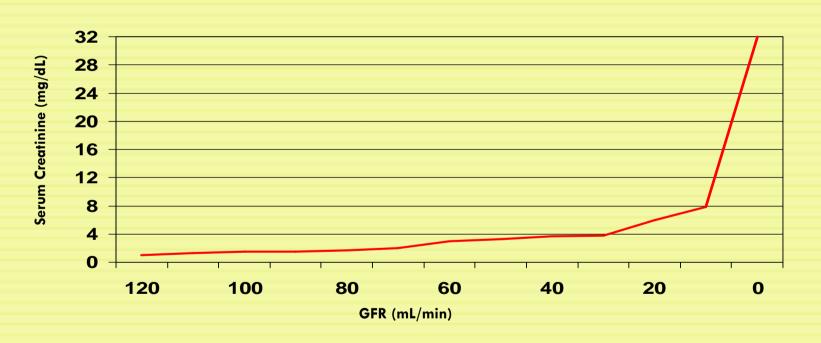
Hiperuricemia

Enfermedad

PROTEINURIA Y ERC

- Es un predictor independiente del pronóstico renal en nefropatía diabética y no diabética
- Dipstick positivo es el predictor mas importante de terapia sustitutiva renal a 10 años
- Microalbuminuria normal alta predice proteinuria en Diabetes
- La magnitud del descenso de la proteinuria con IECAs y Bloqueantes AT1 predice proporcionalmente una menor tasa de caida del Filtrado Glomerular
- En pacientes con proteinura basal < a 0.5 g/día no se</p>

Monitoring Renal Function: GFR


- Glomerular Filtration Rate (GFR)
 - GFR is the best measure of renal function
 - Total GFR is an index of functioning renal nephron mass
 - Inulin clearance = Gold standard
 - Able to achieve stable plasma concentration
 - Freely filtered at the glomerulus
 - Not reabsorbed, secreted, synthesized, or metabolized by the kidney
 - Filtered inulin = excreted inulin (iothalamate, DTPA)
 - Impractical to use clinically (requires IV infusion, inulin assay, \$)

Monitoring of Renal Function: SCr

Serum Creatinine (SCr)

- Derived from the metabolism of creatine in skeletal muscle
- Released into the plasma at relatively constant rate
- Reflective of total muscle mass and influenced by dietary ingestion of creatinine in cooked meat
 - Muscle mass affected by body habitus, nutritional and catabolic status of the patient
- In normal patients on a constant diet, SCr is a reliable guide to GFR

Defining Renal Dysfunction: GFR

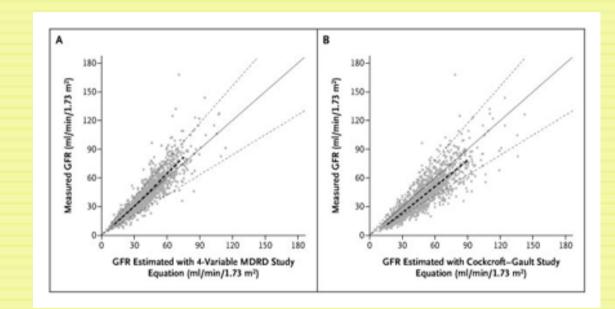
Adapted from: Kassirer JP, 1971. N. Engl. J. Med 285(7):385-389

Estimación del Filtración Glomerular

- ✓ Marcadores directos: Inulina, DTPA.
- ✓ Clearance de Creatinina: U x V/P, con Cimetidina (400 mg/6hs/72hs), (Cl Creat + Cl Urea)/2
- Estimaciones a partir de Fórmulas:
 - ✓ Cockroft-Gault:

(140-edad) x peso (kg) / (Cr pl (mg/dl) x 72). Para mujeres x 0.85

✓ MDRD (Modification of Diet in Renal Disease):


GFR= 170 x creat^{-0,999} x edad^{-0,18} x BUN^{-0,17} x alb^{0,318} x (0,762 si mujer) x (1,18 si raza negra)

- ✓ CKD EPI
- ✓ Cistatina

Relación entre la Tasa de FGe y la Tasa FGm en la población del MDRD

Table 6. Clinical circumstances in which clearance measurements may be necessary to estimate glomerular filtration rate (GFR)

Extremes of age and body size

Pregnancy

Severe malnutrition or obesity

Diseases of skeletal muscle

Paraplegia or quadriplegia

Vegetarian diet

Rapidly changing kidney function

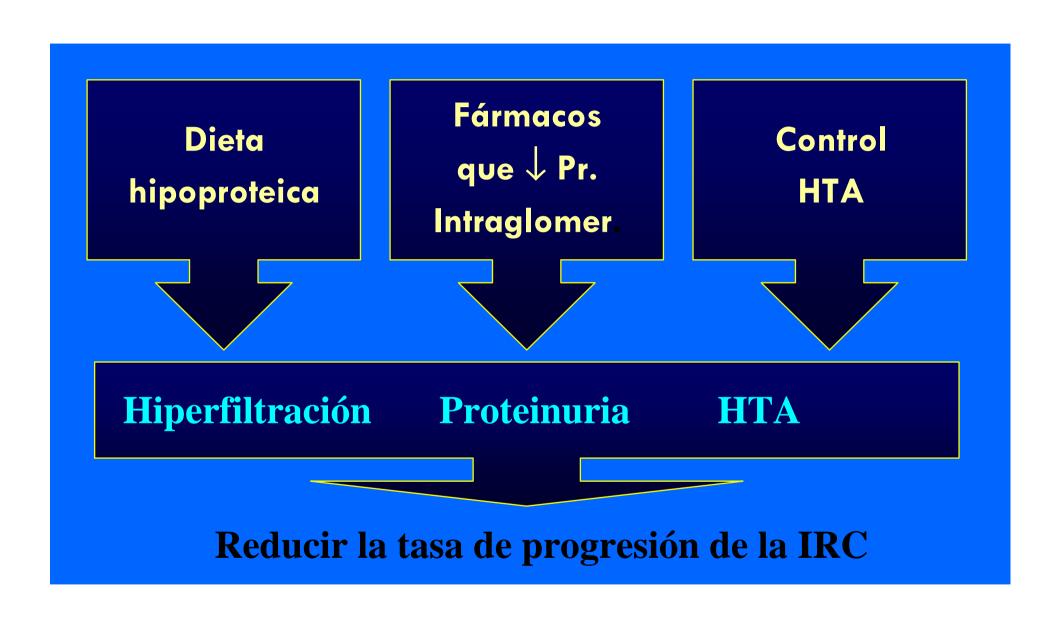
Prior to dosing drugs with significant toxicity that are excreted by the kidney

Prior to kidney donation

Clinical research projects with GFR as a primary outcome

Qué Medidas pueden retrasar la progresión de la ERC?

MANEJO DE LA IRC


Retrasar la entrada en diálisis

↓ la mortalidad al inicio de la diálisis

Evitar deterioro clínico
Prevenir desnutrición
Corregir anemia
Tratar alteraciones P-Ca
Controlar HTA
Prevenir complicaciones CV

Preparación para tto combinado: HD/DP y Tx renal Elección de técnica FAV o cateter peritoneal Inclusión en lista de espera

Manejo de la ERC

Factores clásicos de riesgo CV.

- ✓ Control de la TA.
- ✓ Reducción de la proteinuria con IECA o ARA II
- ✓ Control de la DLP. Objetivos: LDL < 100 mg/dl y HDL > 40 mg/dl
- \checkmark Control de la DBT: HbA1c < 7

Evitar la iatrogenia:

- √ Ajustar los fármacos al FG, especialmente en ancianos.
- ✓ Evitar en lo posible el uso de AINEs.
- ✓ Precaución con el uso de HGO (FG < 30 ml/min).</p>
- ✓ Evitar asociaciones no controladas de fármacos que retienen potasio:
 - ✓ IECA, ARA II, diuréticos ahorradores de potasio, AINEs, b-bloqueantes.

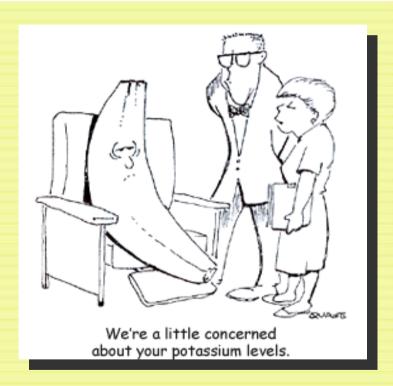
Screening del riesgo para ERC

iiADVERTENCIA!!

El uso aislado de la tasa de FG estimada es falaz si no se considera el género, la edad, la etnia y contextura física.

Sobreestima daño en mujeres añosas

- ► CREATININA Y ESTIMACION DEL FG
- MONITOREO DE TENSION ARTERIAL
- **▶ GLUCEMIA**
- ANALISIS DE ORINA
- MICROALBUMINURIA/PROTEIN


Cuando empezar con Diálisis ??

Criterios Absolutos

- ✓ Pericarditis
- ✓ Encefalopatía urémica
- ✓ Sobrecarga de volumen
- ✓ HTA refractaria
- ✓ Hiperpotasemia

Indicaciones Electivas

- ✓ GFR 5-8 ml/min (Diabéticos: 8-12 ml/min)
- ✓ Anorexia, nauseas, vómitos, astenia, palidez
- ✓ Pobre ingesta de nutrientes

Cuando iniciar TSR

Co-morbidities Account for the Lack of Benefit of an Early Start of Chronic Dialysis

<u>Laham G</u>, Diaz C, Soler Pujol G, Vilches A.: Dialysis Unit FME-CEMIC, Sección Nefrología. CEMIC. Buenos Aires. Argentina.

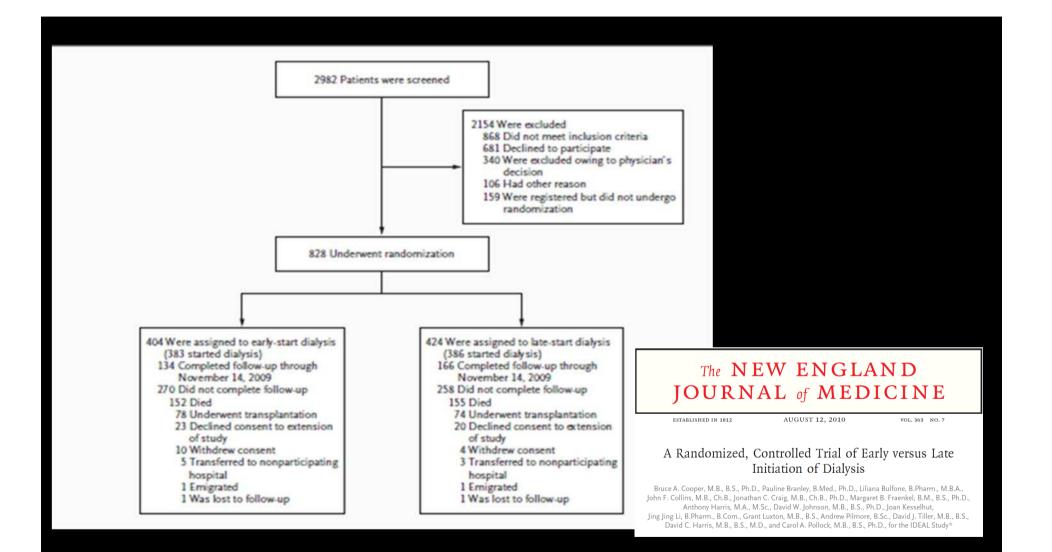


Table 2. Primary and Secondary Outcomes, Including Adverse Events.

Outcome	Early-Start Group (N = 404)		Late-Start Group (N = 424)		Hazard Ratio with Early Start	P Value
Outcome	No. of	No. of Events/	No. of	No. of Events/	(95% CI)	P value
	Events	100 Patient-Yr	Events	100 Patient-Yr		
Primary outcome: death from any cause	152	10.2	155	9.8	1.04 (0.83-1.30)	0.75
Secondary outcomes						
Composite cardiovascular events	139	10.9	127	8.8	1.23 (0.97-1.56)	0.09
Cardiovascular death	63	4.2	71	4.5	0.94 (0.67-1.32)	0.70
Nonfatal myocardial infarction	47	3.4	37	2.4	1.39 (0.91-2.15)	0.13
Nonfatal stroke	33	2.3	29	1.9	1.21 (0.73-2.00)	0.45
Hospitalization with new-onset angina	42	3.0	39	2.6	1.15 (0.75-1.78)	0.52
Transient ischemic attack	9	0.6	4	0.3	2.36 (0.73-7.68)	0.15
Composite infectious events	148	12.4	174	14.3	0.87 (0.70-1.08)	0.20
Death from infection	39	2.6	28	1.8	1.46 (0.90-2.38)	0.12
Hospitalization for infection	135	11.3	170	13.9	0.81 (0.65-1.02)	0.07
Complications of dialysis						
Need for access revision	145	13.2	147	12.4	1.08 (0.85-1.35)	0.54
Access-site infection	47	3.4	50	3.5	0.99 (0.67-1.48)	0.97
Serious fluid or electrolyte disorder	146	13.2	175	15.0	0.88 (0.71-1.10)	0.26
Placement of temporary dialysis catheter	118	10.0	124	9.7	1.03 (0.80-1.32)	0.85
Death as a result of treatment withdrawal	24	1.6	22	1.4	1.17 (0.66-2.08)	0.60
Death from cancer	14	0.9	16	1.0	0.92 (0.45-1.89)	0.82
Death from another cause	12	0.8	18	1.1	0.72 (0.35-1.49)	0.37

Co-morbidities Account for the Lack of Benefit of an Early Start of Chronic Dialysis

The late starters were younger.

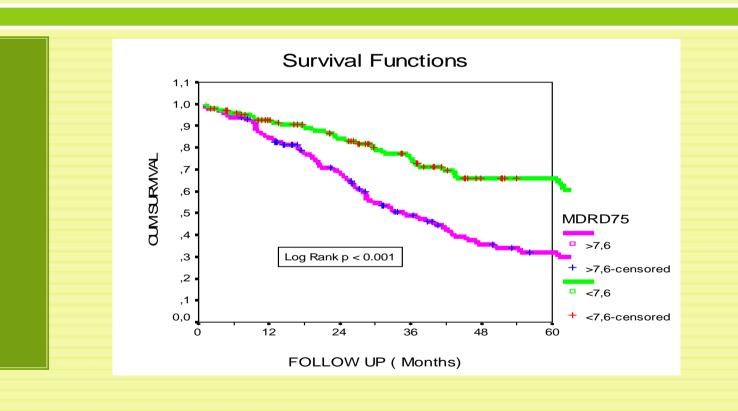
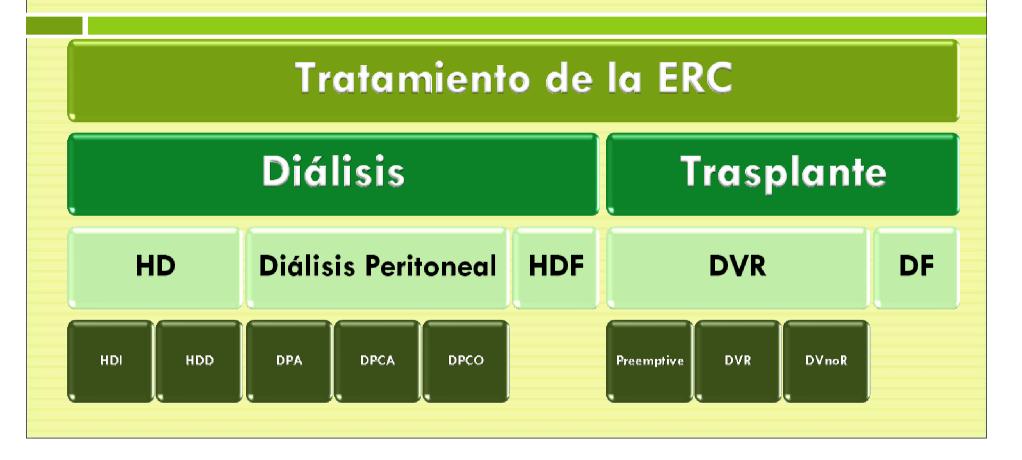

Had higher phosphorus, Ca x P product and PTHi than Early start patients.

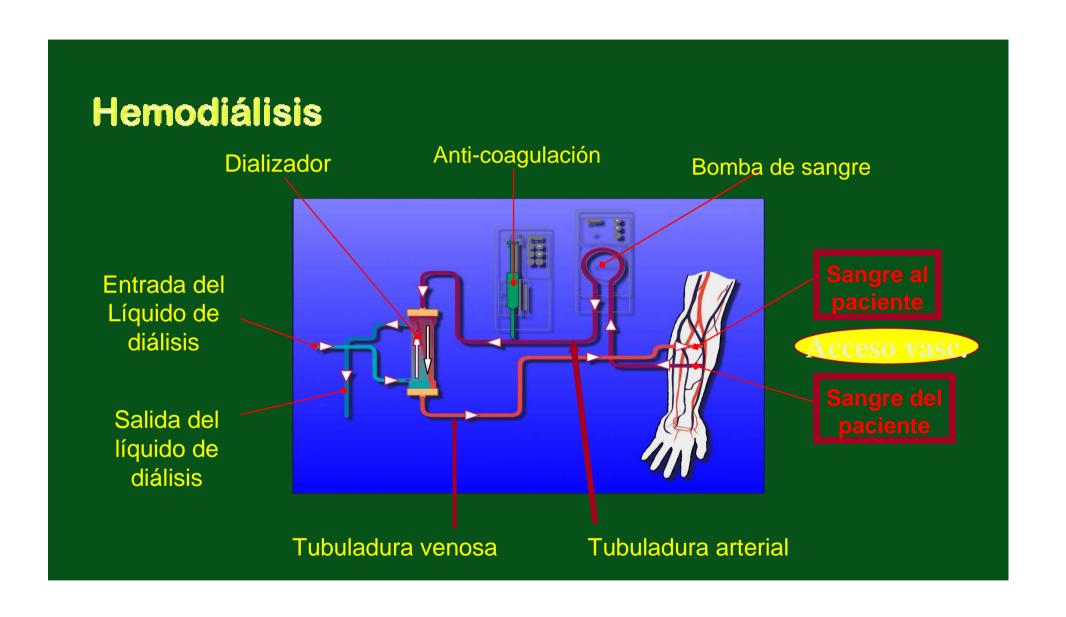
Table 1:Demographic and laboratory Data

Variables	All patients N=202	Early Start MDRD >7.6	Late Start MDRD <7.6	P
Ages (v)	60.79 +	N=101 63.7 ± 16.9	N=101 58.2 + 16.3	< 0.02
Follow up (m)	38.94 +	33.9 + 26.7	40.6 + 29.4	NS
Sex Male (%)	Ø8.3	73.5	63	NS
Diabetics (%)	17.8	25.5	10	<0.00
Creat (mg/dl)	7.62 + 2.9	5.5 + 1.4	9.6 + 2.5	€0.00
Urea (mg/dl)	192 ± 62.8	174 ± 55.3	208 ± 64.7	80.00
MDRD (ml/min)	7.6 (6-9.8)	9.8 (8.5-11.7)	6.1 (5-7)	80.00
Albumin (g/l)	3.8 ÷ 0.5	3.8 ± 0.5	3.9 ± 0.4	NS
Calcium (mg/dl)	8.8 ± 1.2	8.9 + 1.1	8.8 + 1.2	NS
Phosp (mg/dl)	5.8 ± 2.0	5.3 ± 1.6	6.4 ± 2.1	<0.00
Ca x P	51.9 ± 18.1	47.4 ± 15.4	56.1 ± 19.5	@O.00
PTHi (ng/dl)	277(108-	212 (97-458)	367(143-600)	≵ 0.03
Hb (g/dl)	930)÷ 2.1	9.7 ± 2.6	9.5 + 1.6	NS
KHAN Index				
Low (%)	40.7	32.3	49	<0.02
Medium (%)	19.1	18.2	20	NS
High (%)	40.2	49.5	31	<0.02
Transplant (%)	20.8	15.3	27	< 0.04

Few had DM

Co-morbidities Account for the Lack of Benefit of an Early Start of Chronic Dialysis



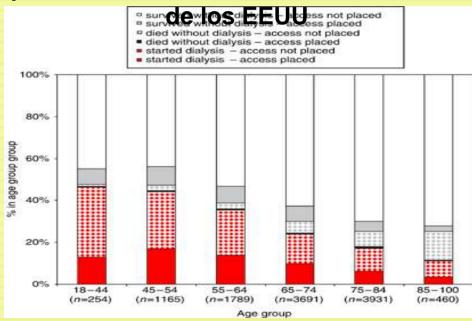

Co-morbidities Account for the Lack of Benefit of an Early Start of Chronic Dialysis

> Conclusion:

 In a single center retrospective studies such as ours, an early start of RRT is associated with a higher mortality probably due to a greater prevalence of comorbidities at initiation and hence may not be useful to establish general guidelines. Furthermore our conclusions may only apply to a predominantly Caucasian population with a low prevalence of diabetes.

Selección del tratamiento sustitutivo

Mortalidad en Diálisis


La mortalidad en HD es bimodal: 6-16% primeros 90 días.

Factores relacionadas con elevada Mortalidad precoz:

- Envío tardío del paciente al nefrólogo
- Duración de asistencia nefrológica en etapa prediálisis
- Presentación no planificada
- Ausencia de acceso vascular
- Comorbilidad
- Hipoalbuminemia

FÍSTULA ARTERIOVENOSA

Resultados 1 año post HD sobre >11000 ptes. Con TFG >25 ml/min en Veteranos

O'Hare AM et al, KI 71:555-561,2007

FÍSTULA ARTERIOVENOSA

Resultados

- 25% inició HD al año
- De éstos solo 39% tenía acceso permanente
- A mayor edad menos accesos y menor necesidad de diálisis pues se mueren de otras causas o la "progresión" es más

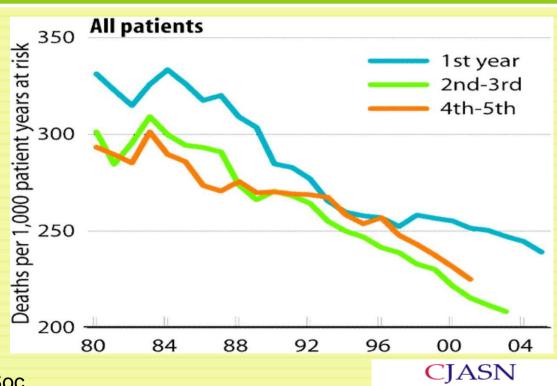
Diálisis Peritoneal

Por medio de la infusión de la solución de diálisis, en la cavidad abdominal.

La transferencia de solutos entre la sangre y la solución se da por difusión.

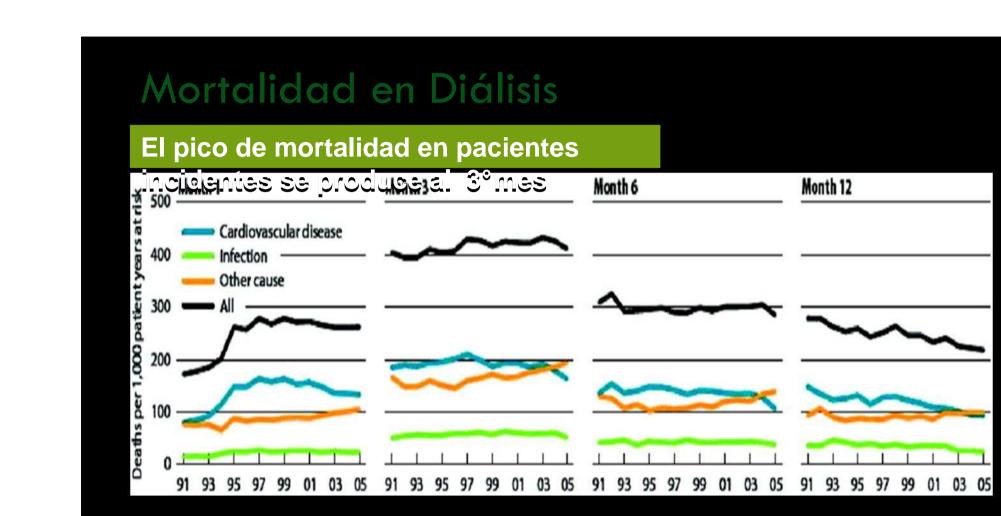
La transferencia de agua ocurre por ósmosis, y se utiliza para generar

Bolsa con solución fresca

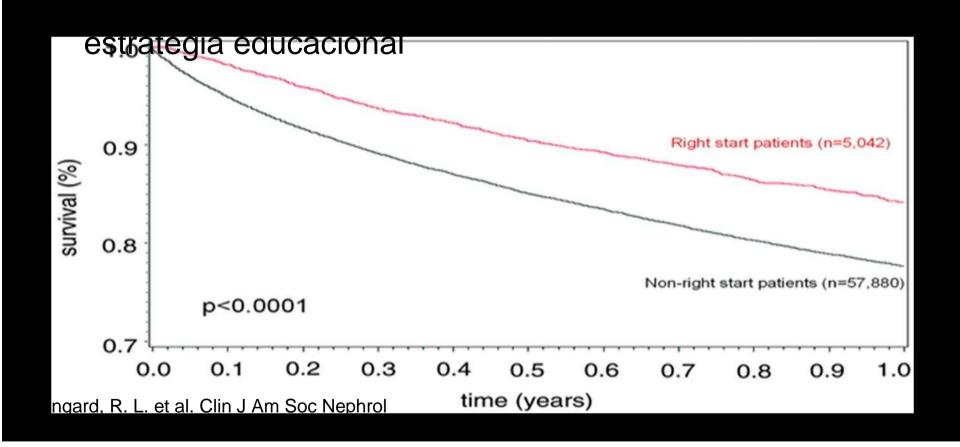

Peritoneo

Catéter implantado

Solución de diálisis peritoneal


Mortalidad en Diálisis

La mortalidad durante el primer año es muy alta si bien ha disminuído en las últimas 2



Wingsid, De Carell. Clin J Am Soc

El pico de mortalidad en pacientes

Mortalidad en Diálisis

ERC Estadío 0

Screening de ERC:

Solicitar Creatinina para estimar tasa de FG

MDRD abreviado

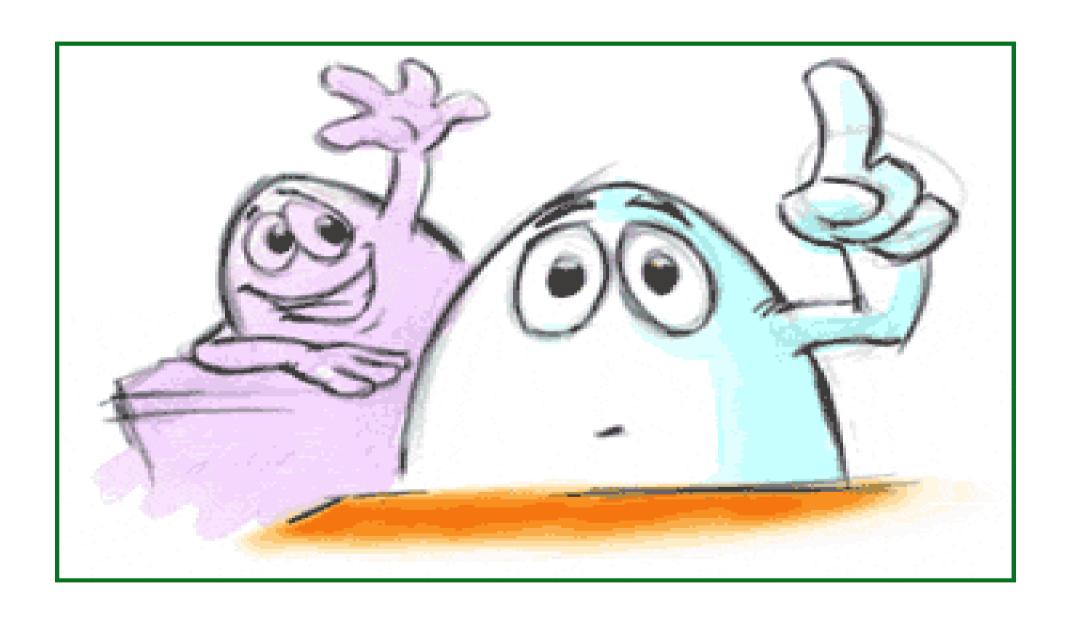
- Realizar análisis de orina: microalbuminuria/ proteinuria/microhematuria.
 - Evaluar necesidad de imágenes

2. Corregir factores de riesgo:

 Obesidad, HTA, DBT, Enfermedad cardiovascular, hiperlipidemia, tabaco, fármacos nefrotóxicos. ERC Estadíos 1, 2 y 3

1. Diagnóstico de Enf. Renal

 Imágenes, Estudios Complementarios, Biopsia renal.


2. Corregir factores de riesgo:

- Obesidad, HTA, Glucemia, Enfermedad cardiovascular, hiperlipidemia, tabaco, fármacos nefrotóxicos.
- 3. Interferir etiopatogénicamente con el mecanismo del daño renal
- 4. Retardar la Progresión de Deterioro Funcional renal

Disminuir Proteinuria mediante la corrección de

ERC Estadío 4

- 1. Compartir la Atención derivando a un especialista para:
 - Orientar sobre posibles formas de TSR
 - Modos de TSR
 - Accesos según modalidad elegida
 - Lugar del Trasplante renal como parte de su tratamiento
 - Coordinar el seguimiento multidisciplinario

